Brief information about the project

Name of the project	AP09058570 «The development of the electrochemical
	modification method of carbon sorbent to impart the required
	sorption properties»
Kelevance	technologies available for the removal of toxic substances from drinking water and industrial wastewater, such as chemical
	precipitation, adsorption, biosorption, ion exchange, reverse osmosis, membrane filtration, electrochemical treatment,
	coagulation and flocculation, solvent extraction, cathodic electrodeposition, cementation processes, etc. However, despite the ease of use, selectivity, low time consumption, etc., these
	methods have many disadvantages in the form of large capital investments, high energy and operating consumption, sludge release, as well as the selection of conditions and materials for
	selectivity process. The novelty of this project lies in endowing the surface of a carbon material with the required sorption properties
	by changing the acid-base properties of the surface after modification.
Purpose	Development of a method for electrochemical and chemical influence on carbon material to form a modified functional layer on its surface for carrying out a selective sorption process
Objectives	1) obtaining carbon materials based on plant and carbon-mineral
5	raw materials;
	2) carrying out modification of carbon materials under various
	conditions and studying its effect on surface properties;
	3) manufacturing an electrolyzer to carry out the process in dynamics:
	4) carrying out electrochemical modification while varying the
	electrolyte composition and modes for further study of the sorption
	of organic and inorganic substances.
Expected and achieved	Carbon sorbents based on mineral and plant raw materials were
results	obtained, and their physicochemical characteristics were studied.
	Electrochemical modifications of the resulting sorbents were
	carried out under different conditions in different electrolytes. It
	has been demonstrated that electrochemical oxidation of activated
	characteristics. An increase in the number of functional groups
	after anodic modification of activated carbon has a direct effect on
	the sorption properties. During the study, a new electrolyzer was
	developed and constructed for the modification of activated carbon
	sorbents.
Research team members	Atchabarova Azhar aidarovna
with their identifiers	https://www.scopus.com/authid/detail.uri?authorId=56998822600
(Scopus Author ID,	https://www.webofscience.com/wos/author/record/53537705
Researcher ID, ORCID, if available) and links to	https://orcid.org/0000-0002-4600-2728
relevant profiles	Abduakhytova Dinara Aktaykyzy
	https://www.scopus.com/authid/detail.uri?authorId=57344630000
	https://www.webofscience.com/wos/author/record/GYA-5917- 2022

	https://orcid.org/0000-0002-4316-0755
	Abdimomyn Saken Kynabekuly
	https://www.scopus.com/autilu/detail.ull?autilorid=3/318892100
	https://www.weboiscience.com/wos/author/record/52548051
	<u>https://orcid.org/0000-0002-5985-9050</u>
	Kishibayev Kanagat Kazhmukanovich
	https://www.scopus.com/authid/detail.uri?authorId=56604294100
	https://www.webofscience.com/wos/author/record/53609035
	https://orcid.org/0000-0003-1590-5243
	Tokpayev Rustam Rishatovich
	https://www.scopus.com/authid/detail.uri?authorId=56998810900
	https://www.webofscience.com/wos/author/record/440647
	https://orcid.org/0000-0002-0117-4454
	Beknazarov Kanat Isatayuly
	https://www.webofscience.com/wos/author/record/46794978
	https://orcid.org/0000-0001-5023-0486
List of publications with	1) Saken Abdimomyn, Azhar Atchabarova*, Dinara
links to them	Abduakhytova, Rustam Tokpayev, Kanagat Kishibayev, Tamina
	Khavaza, Andrey Kurbatov, Graziella Liana Turdean, Mikhail
	Nauryzbayev. Investigation of the functional layer formation on the
	surface of carbon material // Studia UBB Chemia, 67 (4), 2022.
	DOI:10.24193/subbchem.2022.4.10
	2) Azhar Atchabarova, Saken Abdimomyn*, Dinara
	Abduakhytova*, Kanagat Kishibayev, Yelena Zlobina, Andrey
	Kurbatov, Graziella Liana Turdean, Thierry Dienizian.
	Electrochemical modification of the carbon materials surface by
	hydroxyl groups // Journal of Solid State Electrochemistry, 2023
	https://doi.org/10.1007/s10008-023-05780-8
Patents	not planned

